A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P)+-dependent malic enzyme (ME2) and induces cellular senescence

نویسندگان

  • Ju-Yi Hsieh
  • Shao-Yu Li
  • Wen-Chen Tsai
  • Jyung-Hurng Liu
  • Chih-Li Lin
  • Guang-Yaw Liu
  • Hui-Chih Hung
چکیده

Here, we found a natural compound, embonic acid (EA), that can specifically inhibit the enzymatic activity of mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME, ME2) either in vitro or in vivo. The in vitro IC50 value of EA for m-NAD(P)-ME was 1.4 ± 0.4 μM. Mutagenesis and binding studies revealed that the putative binding site of EA on m-NAD(P)-ME is located at the fumarate binding site or at the dimer interface near the site. Inhibition studies reveal that EA displayed a non-competitive inhibition pattern, which demonstrated that the binding site of EA was distinct from the active site of the enzyme. Therefore, EA is thought to be an allosteric inhibitor of m-NAD(P)-ME. Both EA treatment and knockdown of m-NAD(P)-ME by shRNA inhibited the growth of H1299 cancer cells. The protein expression and mRNA synthesis of m-NAD(P)-ME in H1299 cells were not influenced by EA, suggesting that the EA-inhibited H1299 cell growth occurs through the suppression of in vivo m-NAD(P)-ME activity EA treatment further induced the cellular senescence of H1299 cells. However, down-regulation of the enzyme-induced cellular senescence was not through p53. Therefore, the EA-evoked senescence of H1299 cells may occur directly through the inhibition of ME2 or a p53-independent pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knockdown of Malic Enzyme 2 Suppresses Lung Tumor Growth, Induces Differentiation and Impacts PI3K/AKT Signaling

Mitochondrial malic enzyme 2 (ME2) catalyzes the oxidative decarboxylation of malate to yield CO2 and pyruvate, with concomitant reduction of dinucleotide cofactor NAD(+) or NADP(+). We find that ME2 is highly expressed in many solid tumors. In the A549 non-small cell lung cancer (NSCLC) cell line, ME2 depletion inhibits cell proliferation and induces cell death and differentiation, accompanied...

متن کامل

The mechanisms of malic enzyme 2 in the tumorigenesis of human gliomas

The high level of resistance of glioblastoma multiforme (GBM) to currently used chemotherapies and other conventional therapies, its invasive characteristics and the presence of stem-like cells are the major factors that make the treatment of GBM difficult. Recent studies have demonstrated that the homeostasis of energy metabolism, glycolysis and mitochondrial oxidation of glucose are important...

متن کامل

Chronic reduction of the cytosolic or mitochondrial NAD(P)-malic enzyme does not affect insulin secretion in a rat insulinoma cell line.

The cytosolic malic enzyme (ME1) has been suggested to augment insulin secretion via the malate-pyruvate and/or citrate-pyruvate shuttles, through the production of NADPH or other metabolites. We used selectable vectors expressing short hairpin RNA (shRNA) to stably decrease Me1 mRNA levels by 80-86% and ME1 enzyme activity by 78-86% with either of two shRNAs in the INS-1 832/13 insulinoma cell...

متن کامل

Down-regulation of malic enzyme 1 and 2: Sensitizing head and neck squamous cell carcinoma cells to therapy-induced senescence.

BACKGROUND The purpose of this study was to present the results of our investigation of malic enzyme (ME) expression and the induction of senescence in head and neck squamous cell carcinoma (HNSCC). METHODS P53, ME1, ME2, and aspects of cellular metabolism, such as reactive oxygen species (ROS) were investigated in HNSCC cell lines. RESULTS Both metformin and ionizing radiation inhibited th...

متن کامل

Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases.

BACKGROUND Malic enzymes catalyze the oxidative decarboxylation of malate to pyruvate and CO2 with the concomitant reduction of NAD(P)+ to NAD(P)H. They are widely distributed in nature and have important biological functions. Human mitochondrial NAD(P)+-dependent malic enzyme (mNAD-ME) may have a crucial role in the metabolism of glutamine for energy production in rapidly dividing cells and tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015